Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations.
نویسندگان
چکیده
The application and physiological background of two industrial Saccharomyces cerevisiae strains, isolated from harsh industrial environments, were studied in Very High Gravity (VHG) bio-ethanol fermentations. VHG laboratory fermentations, mimicking industrially relevant conditions, were performed with PE-2 and CA1185 industrial strains and the CEN.PK113-7D laboratory strain. The industrial isolates produced remarkable high ethanol titres (>19%, v/v) and accumulated an increased content of sterols (2 to 5-fold), glycogen (2 to 4-fold) and trehalose (1.1-fold), relatively to laboratory strain. For laboratory and industrial strains, a sharp decrease in the viability and trehalose concentration was observed above 90 g l⁻¹ and 140 g l⁻¹ ethanol, respectively. PE-2 and CA1185 industrial strains presented important physiological differences relatively to CEN.PK113-7D strain and showed to be more prepared to cope with VHG stresses. The identification of a critical ethanol concentration above which viability and trehalose concentration decrease significantly is of great importance to guide VHG process engineering strategies. This study contributes to the improvement of VHG processes by identifying yeast isolates and gathering yeast physiological information during the intensified fermentation process, which, besides elucidating important differences between these industrial and laboratory strains, can drive further process optimization.
منابع مشابه
Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs.
Statistical experimental designs were used to develop a medium based on corn steep liquor (CSL) and other low-cost nutrient sources for high-performance very high gravity (VHG) ethanol fermentations by Saccharomyces cerevisiae. The critical nutrients were initially selected according to a Plackett-Burman design and the optimized medium composition (44.3 g/L CSL; 2.3 g/L urea; 3.8 g/L MgSO₄·7H₂O...
متن کاملIdentification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations
BACKGROUND The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG) or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer re...
متن کاملSaccharomyces cerevisiae in the Production of Whisk(e)y
Whisk(e)y is a major global distilled spirit beverage. Whiskies are produced from cereal starches that are saccharified, fermented and distilled prior to spirit maturation. The strain of Saccharomyces cerevisiae employed in whisky fermentations is crucially important not only in terms of ethanol yields, but also for production of minor yeast metabolites which collectively contribute to developm...
متن کاملCombining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
BACKGROUND In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient in...
متن کاملLarge-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance
BACKGROUND During the final phases of bioethanol fermentation, yeast cells face high ethanol concentrations. This stress results in slower or arrested fermentations and limits ethanol production. Novel Saccharomyces cerevisiae strains with superior ethanol tolerance may therefore allow increased yield and efficiency. Genome shuffling has emerged as a powerful approach to rapidly enhance complex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bioscience and bioengineering
دوره 112 2 شماره
صفحات -
تاریخ انتشار 2011